Ultra-high Dimensional Variable Screening via Density Weighted Variance

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Screening in High-dimensional Feature Space

Variable selection in high-dimensional space characterizes many contemporary problems in scientific discovery and decision making. Fan and Lv [8] introduced the concept of sure screening to reduce the dimensionality. This article first reviews the part of their ideas and results and then extends them to the likelihood based models. The techniques are then applied to disease classifications in c...

متن کامل

Development of Ultra-High-Density Screening Tools for Microbial “Omics”

High-throughput genetic screens in model microbial organisms are a primary means of interrogating biological systems. In numerous cases, such screens have identified the genes that underlie a particular phenotype or a set of gene-gene, gene-environment or protein-protein interactions, which are then used to construct highly informative network maps for biological research. However, the potentia...

متن کامل

Nonparametric Independence Screening in Sparse Ultra-High Dimensional Additive Models.

A variable screening procedure via correlation learning was proposed in Fan and Lv (2008) to reduce dimensionality in sparse ultra-high dimensional models. Even when the true model is linear, the marginal regression can be highly nonlinear. To address this issue, we further extend the correlation learning to marginal nonparametric learning. Our nonparametric independence screening is called NIS...

متن کامل

6 Sure Independence Screening for Ultra - High Dimensional Feature Space ∗

High dimensionality is a growing feature in many areas of contemporary statistics. Variable selection is fundamental to high-dimensional statistical modeling. For problems of large or huge scale pn, computational cost and estimation accuracy are always two top concerns. In a seminal paper, Candes and Tao (2007) propose a minimum l1 estimator, the Dantzig selector, and show that it mimics the id...

متن کامل

Faithful Variable Screening for High-dimensional Convex Regression By

We study the problem of variable selection in convex nonparametric regression. Under the assumption that the true regression function is convex and sparse, we develop a screening procedure to select a subset of variables that contains the relevant variables. Our approach is a two-stage quadratic programming method that estimates a sum of one-dimensional convex functions, followed by one-dimensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Biometrics & Biostatistics

سال: 2018

ISSN: 2155-6180

DOI: 10.4172/2155-6180.1000401